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The hypervirial theorem was first introduced for bound-state systems and, subsequently, extended to 
one-electron scattering problems. In this paper electron-atom collisions are considered and the appropriate 
form of the hypervirial theorem is derived. Its relation to the original formulation is discussed. Application 
is made to the electron-hydrogen problem. Both elastic and inelastic collisions are investigated. 

I. INTRODUCTION 

THE classical and quantum-mechanical hypervirial 
theorems were first derived by Hirschfelder1 for 

bound-state systems. From them an infinite family of 
exact relations may be deduced, the usual virial theorem 
being a particular member of this class. Some applica­
tions of the hypervirial relations have already been dis­
cussed.2-4 Classically, they are useful in determining 
the equation of state for liquids; quantum mechanically, 
they are useful, among other things, in determining the 
constants in an approximate wave function and in im­
proving expectation values. 

Recently, Robinson and Hirschfelder5 have shown 
that hypervirial theorems may also be derived for free 
systems. They considered the simplest possible scatter­
ing problem, the scattering of electrons by a central 
potential. Both classical and quantal formalisms were 
employed and in some instances the compatibility of 
corresponding results was demonstrated using the semi-
classical approximation. Epstein and Robinson6 have 
also reported that variational wave functions, optimized 
in accordance with Kohn's variational principle,7 satisfy 
hypervirial theorems. Consequently, such theorems 
should be useful in selecting such approximate functions 
in order to obtain accurate phase shifts or scattering 
amplitudes. 

The object of the present paper is to extend the 
hypervirial theorem to situations in which the scattering 
center has an internal structure. In Sec. II the theory is 
developed in general terms for collisions between elec­
trons and ^-electron atoms. The specific applications 
discussed in the subsequent sections are to the electron-
hydrogen problem. In Sec. I l l exchange effects are 
neglected and some relations derived for elastic colli­
sions. The effects of the Pauli principle are discussed in 
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Sec. IV and analogous relations derived. More compli­
cated inelastic collisions are investigated in Sec. V, 
exchange effects being first neglected, then included. 

Atomic units are used throughout. 

II. THEORY 

The hypervirial theorem for systems obeying the 
laws of classical mechanics was derived using the classi­
cal equation of motion in terms of the Poisson brackets. 
The quantum-mechanical equivalent was derived using 
the Heisenberg equation of motion.1 Consider an atomic 
system consisting of N+i electrons labeled by sub­
scripts i. The wave functions ^ ( i v • • ,TN+ht) describing 
this system satisfy the usual Schrodinger time-inde­
pendent equation 

fl^Ov • - , ^ + 1 , 0 = E * 0 v --,1^+1,0, (i) 
with 

N+l 

H=-h E V/+K(r1;---,rw), (2) 

where V denotes the total electrostatic potential energy. 
Suppose W is an arbitrary time-independent operator 

and tym, ^n are eigenfunctions satisfying Eq. (1) with 
eigenenergies Em and En. Then8 

= i(Em-En) Um*W*ndr. (3) 

Except where otherwise stated, it is to be assumed that 
the volume integration is over the volume space of all 
the electrons. 

For bound systems the falloff with distance in the 
wave functions is usually sufficiently rapid to ensure 
a finite value for the expectation value of W. 
Consequently, 

* / [ J ^ , # > ^ r - 0 . (4) 

This is the hypervirial theorem for bound-state sys­
tems.1 The hypervirial relations are deduced by allow-

8 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1955), 2nd ed., p. 140. 
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ing the operator W to assume specific values. In scatter- the hypervirial theorem in the form 
ing problems, however, the expectation value of W will 
not, in general, be finite. This is demonstrated in the f r-n w~\& J 
Appendix for scattering of an electron by a central J 1'- ~~ ' J 2 r 

potential. Consequently, an alternative derivation for 
the hypervirial theorem must be used. r r 

We note that if ¥1 and * 2 are degenerate solutions of =~iH dr/ / { ^ i V * ( J ^ 2 ) - (WV2)V&i} 'dS{. 
the Schrodinger equation (1) with associated eigenvalue * ^Si ,+ 9N 
E then . • 

' If W commutes with E, then this reduces to 
(H-E)¥i= ( £ T - E ) ¥ 2 = 0 . (5) 

Hence, Uf^H^W^dr 

W^iH-E^tdr^ \^lW{H-E)^2dr. (6) 
—4E fdu'f { 

i J J Si 
Consider now ' (13) 

/

r In the subsequent sections these relations will be 

*i[H-E, Wj&2dT= Nfl(H-E)(W^2)dr applied to electron-hydrogen collisions. In this case 
they become 

Using (6), the right-hand side of (7) may be rewritten as 
- — / dTl I { t f iV 2 (W^ 2 ) - (PFtf2)V2*i} -dS2 

/

/» 9 / / 

^1{H-E)W^r2dr- / (W*d(H-E)*idT 
J 1 r r 

/ dr2 / {^xViCW^a)- (W¥2)Vi*i} -dSi (120 
f 2J J8l 

= / {*iH(W*2)- (W*a)H*i}dT (8) and 
and since 

' Vi[H,W]p2dT 
/^iF(ri ,--- ,r jv+ i)W^2rfT 

f = — dnf {^iV2(T^^2)~ (TF^2)V2^i} -dS2 

= J (W^mu,.'•,!*+!)*&, (9) l) Js2
X 

~~[dr2[ { 
f 2 J J8l 

we have 
{ViVxQV**)- (W^2)Vi^i) • dSi . (130 

III. ELASTIC SCATTERING WITHOUT EXCHANGE 

= - i E J {* i V * ( W ^ 2 ) - (W^ 2 )V^i}rf r . (10) T h e w a v e equation for the system, incident electron 
plus target hydrogen atom, is 

Assuming that TF^2 is a well-behaved function through- {V i
2+ V 2

2 +2£+2 /Vi+2 /V 2 - 2/ri2}^(ri,r2) = 0, (14) 
out the space r», so that Green's theorem can be applied, 
we obtain where the incident electron is distinguished by the suffix 

1, the atomic electron by the suffix 2. For the time being, 
r-r rro/mT \ /TI.T \T-T OT i t the effects of electron exchange are neglected. 

{Wfl^,)- (WW&Jdr We m a y expand the wave
B

function
8 ^(ri>rg) in the 

/

- form 

dr/ {VtfitWVd-iWVdV^'dSi, (11) ^(r i , r 2) = 5 B ^n(r 2 )F n (n) . (15) 
Here the large 5 indicates summation over discrete 

where the volume space r / refers to the space of all the states and integration over the continuum. The func-
electrons other than electron i. This enables us to write tions yf/nfa) are solutions of the Schrodinger equation 

/ 
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for a hydrogen atom: 

{V 2
2 +2e n +2A 2 }^( r 2 ) = 0. (16) 

Substituting (15) in (14) and using (16) gives 

(V1
2+^n

2}^n(r1) 

= 2 [( - W i , r 2 ) * » n r 2 ) r f r 2 , (17) 

where kn is the wave number for a free particle with 
energy (E— en) and is defined by 

felder, we first of all choose 

*„*= 2 ( £ - € » ) . (18) 

Now, substituting for \I>, using (15), in (17) we obtain 
an infinite set of coupled equations for Fn(ti): 

where 

{^i2+kr?}Fn(t1) = 2SmUnmFm(r1), 

Unm^ l^n*(r2)[ Wn(r2)^r2. 

(19) 

(20) 

We require solutions to (19) subject to the asymptotic 
conditions 

^ ( r O - r r V ^ ^ / n ^ i ^ i ) , n^O 

Fnir^e1^' r i +r rV* o r i / o (0 i , 0 i ) , » = 0 . 
(21) 

To solve (19) it is necessary to use some approximate 
method of procedure. In the distorted-wave approxima­
tion nondiagonal matrix elements are assumed small 
and on the right-hand side of (19), all matrix elements, 
except those associated with the initial state m~0, are 
neglected. This gives 

{Vi2+kn>-2Unn}Fn(r1) = 2Un0Fo(ri), 
(22) 

{Vi2+ko2-2Uoo}F0(r1) = 0. 

The first of Eqs. (22) is equivalent to taking 

^(r i , r 2 ) = F . ( r 1 ) ^ ( r 2 )+F 0 ( r i ) ^ 0 ( r 2 ) (23) 

in (17); the second is equivalent to taking 

^( r i , r a ) = F0(riVo(r2) (24) 

in the corresponding equation for F0. The Born ap­
proximation is equivalent to replacing ^(r i , r 2 ) in (17) 
by a plane wave eik°'n. I t is interesting to note that if 
the distorted-wave approximation is valid then the 
elastic scattering is the same as that due to a static 
center of force with potential9 Z7oo. 

We shall now derive hypervirial relations for elastic 
scattering assuming the wave functions to be given by 
(24). The major concern is to choose values for the 
operator W such that the right-hand sides of Eqs. (120 
and (130 a r e finite. Following Robinson and Hirsch-

9 H. S. W. Massey, in Handbuch Der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 26, Atoms IT. 

d d 

6Vi dko 
(25) 

and since W in this case does not commute with the 
energy E, we use the hypervirial in the form (120-
We assume the degenerate eigenfunctions for the com­
plete system are ^i(r i , r 2 ) and ^2(r i , r2) defined by 

^ ( r i , r 2 ) = Fo(i)(ri)^o(r2), (26) 

with asymptotic form 

^^{^ko ( 0-«+fi-V*o ( 0"/o(« (* ) ,* ( i ))}^o(r2) (27) 

for large r\. Since the eigenfunctions are degenerate 
we know that the vectors k0

(1) and k0
(2) have equal 

magnitude, ko, but different directions. Consider now 
the right-hand side of (120- The first term is trivially 
zero due to the fast falloff for ^o(r2). The second term 
must be more carefully examined. Consider first the 
integral over the surface Si at infinity. Since the opera­
tor W acts only on F0

( 2 ) we can rewrite this as 

lim f {WFo^ViF^-Fo^^WFo^-dS! (28) 

and use the asymptotic forms for the F's defined by 
(27). We obtain 

dF0
(l) d 

WFo(2) iV1}—(WFo i2)) = zxp[ik0r1(l+cosdw)1 

d 
X—lkofoid^ikorrKl-cosd^-rr2}. (29) 

dko 

Proceeding now in a manner similar to that outlined 
in the Appendix we find 

{WF0
(2)V1Fow-F0

(1)V1WFo(2)}'dS1 

= -4 i r—[fco/oGr-7) ] , (30) 
dko 

where y is the angle between k0
(1) and k0

(2). The volume 
integration gives unity, since 0̂(1*2) is assumed nor­
malized. Hence, we have 

^o ( r 2 )Fo ( 1 ) ( r i ) [ ^ -£ ? TF>o( r 2 )F 0 ^ ) ( r 1 yr i J r 2 

= -2 i r—[fco /o f r -T) ] . (31) 
dko 

We note that using (18), 

dV 
(32) 
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where V is the potential energy defined by 

V=-l/n-l/r*+l/m. 

Hence, (31) may be rewritten in the form 

(33) 

/ / ' 
*o(r 2 )F 0 <»(r i ) 

X 
dV 

driJ 
tAo(r2)/?o(2)(ri)^TA2 

= 2 x — [ V « ( T - 7 ) ] (34) 

and using (22) and (20) may be further simplified to 
give 

T dU0ol 
FQv(ri)\ 2U0o+n Fo« ' ( r i )^ i 

L drj J 
d 

= 2T—thM*-y)l. (35) 
dko 

This is exactly the hypervirial relation derived by 
Robinson and Hirschfelder5 for scattering by a central 
potential Z7oo. I t had also been previously derived by 
Demkov10 using Hulthen's variational principle and 
constitutes the usual virial relation. I t is instructive to 
consider the particular case where ^1=^2* . Then y = 7r 
and (35) reduces to 

dU0 r dc/ool 
Po*(ri) 2U0o+n k ( r i ) d n 

L dri J 

= 2ir—[*0 /o(0)]. (36) 
dko 

This might be interesting in certain connections if used 
in conjunction with the theorem which states that the 
total elastic cross section is equal to Aw/ko times the 
imaginary part of the forward scattering amplitude 
/o(0). I t is also important in that it provides a check 
on our general derivation of the hypervirial theorem 
since (36) was previously derived by Robinson and 
Hirschfelder5 for one particle scattering by a central 
potential. 

I t should also be pointed out that any choice of 
operator W which yields convergent integrals for central 
potential scattering should also do so in the present 
context. Consequently, we might adopt for W powers 
of (nd/drx-kod/dh) or ner^d/drx. With the latter 
choice for W both the surface integrals in (12') are 
found to be zero. An entire family of such operators is 
available, and each can be used to generate a new 
hypervirial relation. 

IV. ELASTIC SCATTERING INCLUDING EXCHANGE 

The form of the wave function in the theory of elastic 
scattering including exchange is usually approximated 

10 Y. N. Demkov, Dokl. Akad. Nauk S.S.S.R. 89, 249 (1953). 

in the following manner.9 We have seen in (15) that 
the total wave function ^(r i , r 2 ) can be expanded in 
the form 

•^(ri,r2) = Fo(ri)^o(r2)+#(ri ,r2) , (37) 

where <£>(ri,r2) represents the totality of all the scatter­
ing waves. Alternatively, we might expand ^(r i , r 2) as 

^(r i , r 2) = 5nGn(r2)^n(ri), 

where Gn(r2) has the asymptotic form 

G»(r 2 )^ f 2 -V*»^„0 2 ) (r2 large). (38) 

If we now expand <3>(ri,r2) in the form 

*(ri,r2) = 5„Gn
,(r2)^n(ri), (39) 

we should expect9 that Go—Go and we might write 

^(r i , r 2) = Go(r2)^o(ri)+/? ,o(ri)^o(r2)+0. (40) 

Neglecting 4> we should have a fair approximation to 
the total wave function. I t is well known9 that the dif­
ferential cross section for elastic collisions independent 
of the approximation is defined by 

i(e)=i\fo(d)+go(d)\*+i\fo(d)-go(d)\\ (41) 
the weighting factors 3:1 being a consequence of the 
Pauli principle. 

We shall now consider the derivation of particular 
relations assuming the total wave function to be ade­
quately represented by (40). Choosing W = r\d/dr\ 
— &0d/d&o as before, the integral over the surface S% is 
found to be infinite. Instead, we use a symmetrized form 
for W given by 

d d d 
Ws^n—+r2 h—. (42) 

dri dr2 dko 

Also, for simplicity we assume 

^i(r i , r2) = ^2(ri ,r2) = ^ ( r i , r 2 ) . (43) 

A. Integration over S2 

Substituting in (12') we find that the integral over 
the surface S2 is given by 

{[F0(r1)^o(r2)+G0(r2)^o(r1)] 

XV 2 ^[F 0 ( r 1 )^o(r 2 )+Go(r 2 )^o(r 1 ) ] 

- ^ [ F o ( r 1 ) ^ o ( r 2 ) + G o ( r 2 ) ^ 0 ( r i ) ] 

X V2[JPo(r1)^o(r2)+Go(r2)^0(r1)]} -d$2. (44) 

Because of the asymptotic form of ^0(r2) this reduces to 

{Go(r2)^o(r1)V2IF>s'[Go(r2)^o(r1)] 

-^[Go(r 2 )^ 0 ( r i ) ]V 2 [Go(r 2 )^o(r 1 ) ]} -dS2. (45) 
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Similarly, the integral over the surface Si becomes and, consequently, reduces to 

[ {FoWM^ViWalFoitMofa)! [ {Fo(r1)^o(r2)V1^ /[F0(r1)^o(r,)] 
J Si J Si 

-WslFoirMrzWlFoirOM^D-dSt. (46) -W'[_F0(i1)Mr2)']V1ZF0(r1)Mr2)l)-dS1. (54) 

Consider now the integral (45). Using the form of Using (30) we now obtain for (44), the integration over-
G o ^ ) given by (38) we obtain r. 

d d 
—[Go(r s)^o(ri)] + 4 ) r — C V o W ] - (5S) 
dr2 ^ 0 

= ^ o ( r 1 ) p V 2 - V * o ^ o ( ^ - f 2 ^ ^ g o ( f c ) ] . (47) T h u s > t h e h y p e r v i r i a l r d a t i o n co^sponding t o Ws i s 

A l S 0 ' /•/• ( dV dV] 
d d \ / / ^ ( r i , r 2 ) | V l

2 + W + r i - K 2 |^(ri,r2)^rirfr2 

r2 k0—J [Go (1*2)̂ 0 (^i)] J J I dri dr2\ 
dr2 dkj , 

d = - ^ o ( r i ) f 2 " 1 H 

and 

go(02)+k(r-
dk0J 

(48) = 2ir—C*o/o W ] • (56) 
ô 

* ~, Provided it is properly symmetrized, any operator 

Tl fG!o(r2)^o(ri)l = ?'iG,o(i,2) -. (49) ^ u s e d *n ^ec* ^ c a n a^ s o b e u s e d *n ^ e P r e s e n t dis-
dri dr\ cussion. Consequently, we can again deduce a family of 

Hence, hypervirial relations. 

L u\ vr»\ jj y INELASTIC SCATTERING 
f d\po dg0} 

= r2~
1eikor2\ri—g0—^a{^i)go{62) — &o^o(ri)—| (50) We shall now show that the hypervirial theorem de-

' dri dk0) rived in Sec. I I is applicable equally well to inelastic 
anc* as to elastic collisions. We choose the approximate form 

—WSIGO(T2)M*I)1 ^•(r1 ,r2) = Fo^ ( r 1 ) ^o ( r 2 )+F ,^ ) ( r 1 ) ^ ( r 2 ) (57) 
2 , ~. ~ , for the total wave function. As seen in Sec. I I I . this 

fl—go((92)--^o(ri)go(^2)-^o^o(ri)— corresponds to using a distorted-wave approximation. ^ 
dri dk0) The integral over the surface S2 in (12') is again 

X {ihr2~
leik^-rr2eik^\ (51) z e r 0 d u e t o t h e r a p i d f a l l o f f i n t h e b o u n d - s t a t e hydrogen-

atom wave functions. Also i^o(r2) and \pn(r2) are orthog-
Substituting now in (45) using (47), (50), and (51) and onal. Hence, (12') reduces to give 
noting that terms of order r2~

z and r2~
4 vanish in limit 

of large r2, we find that (45), the integration over S2, f f T , -„ ^ TTr-,T 7 7 

is identically zero. J ] *lH-E,W^dr,drz 

B. Integration over Si 1 f , 

Consider now (46). If we define 2j /g1 

dri dko % J st 
(58) 

the integration over Si, using Ws=W'+r2d/dr2y may 
be rewritten as -̂n choosing a particular operator W we must be 

careful to ensure that both the surface integrals in 
f f i? ( \ i r \T7 u//rz7 / \ i f \ i (^8) a r e convergent. Our choice is, in general, more re-
/ Jfo(r1)^o(r2)V1^L^o(r1)^0(r2)J s t r f c t e d for i n e l a s t i c c o l l i s i o n s . F o r example, the 

Q operators 
+i?o(ri)^0(r2>2—V1[F0(r1)iAo(r2)] 

dr2
 d < * < * d 

TF=r i—±&o—, ri—ztkn , 
-IF ,C^o(ri)^o(r2)]V1[^o(ri)^o(r2)] dn dk0 dn dkn 

df0 } d d d 
-r2F0(ti)—V1[i?0(r1)^o(r2)] \-d$i (53) n—±h—±kn (59) 

dr2 J dri dk0 dkn 
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and all powers of these are now excluded. I t is conveni­
ent instead to consider operators of the form 

d 
W=n<rari—, a > 0. (60) 

Sri 
The exponential factor now ensures convergence and 
the surface integrals in (58) both give zero. To allow 
for exchange effects, we might write ^(thr2) as 

^(r i , r 2) = Fo(riVo(r2)+Fn(ri)^w(r8) 

+Go(r 2Vo(ri)+G„(r 2)^ n(r 1) . (61) 

As before we can generate hypervirial relations by 
choosing properly symmetrized forms for the operators 
W. 

I t should be emphasized that although the hyper­
virial theorem (12) is exact, all the particular relations 
derived are approximate. The degree of accuracy is 
determined by the accuracy of approximate forms 
adopted for the total wave function ^>(ri,r2). In the 
present discussion we have used the distorted-wave 
approximation, but clearly analogous relations might 
be derived for any given approximate function. 
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APPENDIX 

We wish to show that the integral 

is divergent, where ^ i ( r ) and ^ 2 ( r ) are degenerate 
wave functions with asymptotic form 

tyi(t)~exp(ikr cosfl^+r -1 exp(iftr)/(0*) (A2) 

and 

W=rd/dr~kd/dk. (A3) 

I t will be sufficient to consider the integral (Al) over 
all space outside a sphere of radius R, where R is suffi­
ciently large for the wave functions to assume their 
asymptotic forms. Then 

/ = Nf^(r)W^2(r)dr (Al) 

WVt(t)- - f 1 exp(ikr)—[*/(02)] (A4) 
dk 

and 

¥i*(r)TF*2(r)= -r~l exppMl-cosfli)]—[Jfe/(02)] 
dk 

~r~^(61)-[_kf(d2)-]. (A5) 
dk 

We now expand f(6) in a series of Legendre polynomials 
as 

f(P) = —-E(2/+l)[exp(2^,)-l]Pi(cos0), (A6) 
2ik i 

where rji is the phase shift. Hence, 

d drji 
—[A/(02)] = E ( 2 / + 1 ) exp(2^0—Pz(cos02). (A7) 
dk i dk 

Also 

exp(-ikr cos0i)= (kr)-1 E ( 2 H - 1 ) ( - * ) Z sin(fer-§irf)iMcos0i). 
i 

(A8) 

Thus, 

-r"1 exppftr (1 — costfi)]—[A/(02)] 
dk 

dyi 
= -kr~2 exp(ikr) E ( 2 / + l ) ( 2 J ' + l ) ( - i ) * ' exp(2^ z )— sm(^- |x/OPKcos0 2)P^(cos0i) . (A9) 

i,i' dk 

In order to carry out the angular part of the integration we define a set of coordinates axes at 0, the scattering 
center, such that the coordinates of a point r on the unit sphere are (®,$). Denote by (©*,$»•) the corresponding 
coordinates for the unit vectors k(. Then substituting in (A9) using 

Pi(cos0*) = -
21+1 < 

E Pim(cos@)Pr(cos@, :) exp[>'w($—$*•)], (A10) 

where Pf1 is the normalized associated Legendre polynomial, we obtain 

4 drji 
exp(i*r) E (—i)1'exp(2foii)—sm(£r~i7r/0^r(cos©)Pz>m'(cos©y 

kr2 i,v dk 

XPr(cos@2)Prm ' (cos@i) exp[>»($—$2)] exppw ' (* i—$)] . (All) 
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Integrating now over © and <£, only V~l and wf.—m contributes, and (All) reduces to 

E ( - * ' ) z exp(2^i)— exp(^r) sin(£r~ J ^ P ^ (cos@i)Pr (cos©2) exp[>w(<£i--<£2)]. (A12) 

kr2 i,m dk 

Again using (A 10) and (A7) gives 

4 T drji 

= E exp(2iyji)(—i)l(2l+\)— sm(kr—^irl) exp(ikr)Pi(cosy) 
kr2 i dk 

2iri drji 
= — E e x p ( 2 ^ i ) ( 2 / + l ) — [ ( - 1 ) < exp(2f*r)- 1]PI(COST) (A13) 

£r2 i <9& 
27ri ^r/i 27ri d 

= — E exp (2^ i ) (2 /+ l )— ( - 1 ) ' exp(2i*r)P«(cos7) [ W l 
&r2 « d& £f2 d& 

where 7 is t he angle be tween k i a n d k2 . Consider now the second t e r m in (A5). Us ing (A6) a n d (A7) th is m a y be 
rewritten as 

1 drji 
— - E ( 2 / + l ) ( 2 / ' + l ) [ e x p ( ~ 2 ^ ) - l ] — exp(2ir]l)Pl(cosd2)Plf(cose1). (A14) 
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Proceeding as before, using (A 10) and integrating over (©,<£>), we obtain 

4-ir drji 
-— E —[—exp(2^i)+l]-Piw (cos©i)Pr(cos© 2 ) exp[«»($i—$2)] 
ikr2 i,m dk 

2ir dr}i 2iri drji 2iri d 
= E — Cl~exp(2^0]P l ( cosY) (2 /+ l )= E — (2/+l)P,(cos7) + C * / ( T ) ] . (A1S) 
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Combining (A13) and (A15), the entire volume integration now reduces to 

2vi r drji 
J = — E / — (2l+l)Pi(co$y){exp(2iVl)(-iyexp(2ikr)-~l}dr. (A16) 
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Clearly this is infinite. 


